
 
Volume 3, Issue 3, 2025 
                                                                                             ISSN: (e) 3007-1607 (p) 3007-1593 

https://fmhr.org/                                    | Wali & Achakzai, 2025 | Page 1183 

 

SMARTPHONE DEEP LEARNING OTOSCOPY FOR EAR DISEASE 
DETECTION IN A LOW-RESOURCE SETTING: A PROSPECTIVE PILOT 

STUDY 
 

Dr Shah Wali*1, Dr Arif Achakzai2 
 

*1,2Assistant professor, ENTvand Head and Neck Surgery Department Bolan Medical College Quetta 
 

*1walishah3330@gmail.com, 2drarifachakzai@gmail.com 
 

DOI: https://doi.org/10.5281/zenodo.15534544 
 Abstract 

Background: Ear diseases such as wax impaction, tympanic membrane (TM) 
perforations, and infections are common and can cause hearing loss, particularly 
in low-resource areas. Conventional otoscopic diagnosis is difficult for non-
specialists, prompting research into smartphone-based deep learning (DL) otoscopy 
to improve diagnostic accuracy and accessibility. This study assessed a smartphone-
integrated DL system for classifying ear findings (wax impaction, TM perforation, 
infection, and normal TM) in an outpatient setting at Bolan Medical College in 
Quetta. 
Methods: We conducted a 6-month prospective study with 80 patients (<100 as 
a pilot sample) who presented with ear complaints. A smartphone-attached digital 
otoscope was used to capture otoscopic images, which were then analyzed using a 
deep learning model (YOLOv5 object detection and EfficientNet classification). 
The model was trained on an augmented dataset of 320 images (80 per category) 
using transfer learning. ENT specialists established ground truth diagnoses. We 
calculated sensitivity, specificity, positive predictive value (PPV), and negative 
predictive value (NPV) for each category and compared them to previously 
published results. 
Results: The median age was 29 years (range 5-64), 56% were female, and 65% 
came from rural areas. Infection was the most common diagnosis (35%), followed 
by wax impaction (27.5%), TM perforation (22.5%), and normal TM (15%). 
The DL model had a total accuracy of 91.3%, correctly classifying 73 of 80 cases. 
Sensitivity was 91.7% for normal TM, 95.5% for wax impaction, 88.9% for TM 
perforation, and 89.3% for infection, with specificity ranging from 94.2% to 
100% (Table 1). The PPV and NPV were high across all categories (Table 1). 
Figure 2 shows the model's sensitivity and specificity by category (). The diagnostic 
performance for wax and perforation was particularly strong, with no false 
positives (PPV = 100%). The model performed slightly worse in detecting 
infections, with a few otitis cases misclassified as normal or perforated. 
Conclusion: This pilot study demonstrates the viability of smartphone-based DL 
otoscopy in a low-resource clinical environment. The model achieved diagnostic 
accuracy comparable to expert evaluation for major ear conditions. Implementing 
AI-assisted otoscopy could potentially increase access to early ear disease detection 
in rural and underserved areas. More research with larger multicenter trials are 
needed to validate and refine the model, incorporate tympanic membrane 
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segmentation, and address real-world issues like variable image quality and diverse 
pathologies. Our findings back up the promise of smartphone DL otoscopy as an 
affordable tool for improving ear care equity and outcomes. 

 
 INTRODUCTION
Ear diseases are a leading cause of morbidity and 
hearing loss worldwide. According to the World 
Health Organization, over 5% of the global 
population (430 million people) has disabling 
hearing loss, with nearly 80% of these people living 
in low- and middle-income countries. Otitis media 
(middle ear infection) has been identified as the 
leading preventable cause of hearing loss in children, 
accounting for approximately 46.9% of pediatric 
hearing loss in 2021. Chronic middle ear infections 
are frequently misdiagnosed or mistreated in areas 
like Pakistan due to a lack of access to specialist care, 
contributing to high rates of hearing loss and 
complications. Early detection and accurate 
diagnosis of ear conditions (such as wax impaction, 
tympanic membrane (TM) perforation, and otitis 
media) are critical for avoiding long-term 
consequences like hearing loss, speech delays, and 
intracranial infections. 
Otoscopy, or examination of the ear with an 
otoscope, is the primary diagnostic tool for middle 
and external ear conditions. However, proper 
otoscopic diagnosis necessitates extensive training 
and experience. Non-specialist clinicians frequently 
struggle to interpret TM findings, resulting in 
misdiagnosis or missed disease. Previous research 
suggests that general practitioners and pediatricians 
diagnose otitis media at rates similar to chance in 
some cases (accuracy as low as ~50% in primary 
care). Even among experts, interobserver variability 
can be substantial. This diagnostic challenge is 
exacerbated in low-resource settings, where 
otolaryngologists are scarce and high-quality 
otoscopic equipment may be unavailable. As a result, 
there is an urgent need for assistive diagnostic tools 
that can improve ear examination accuracy and 
increase access to specialist-level assessments. 
Recent advances in artificial intelligence (AI) and 
deep learning (DL) hold great promise for medical 
image analysis, including automated otoscopic image 
interpretation. Convolutional neural networks 
(CNNs) can learn to recognize subtle patterns of ear 
disease (such as a bulging erythematous TM in acute 

otitis media or a tympanic perforation) with great 
accuracy. Multiple research groups have developed 
deep learning models for classifying ear conditions 
from images, with diagnostic accuracy frequently 
exceeding 90%. Livingstone and Chau (2020) 
demonstrated an automated machine learning 
approach (Google AutoML Vision) that matched 
specialist performance in otoscopic diagnosis. In 
pediatric otitis media, CNN models have successfully 
distinguished between acute infection, effusion, and 
normal ears. A 2022 meta-analysis by Habib et al. 
found that AI algorithms could classify ear disease 
with a pooled accuracy of 93.4%, significantly 
outperforming human assessors' 73.2% accuracy. 
Similarly, various CNN architectures (e.g., ResNet, 
DenseNet, EfficientNet) have demonstrated excellent 
performance (often 90-98% accuracy) in 
distinguishing between multiple eardrum conditions. 
An EfficientNet-based model classified normal vs 
diseased TM and identified earwax with ~99% 
sensitivity and specificity on a large dataset. These 
findings indicate that DL has the potential to 
provide expert diagnostic support in otoscopy. 
Building on these advances, there is an increasing 
interest in deploying AI-powered diagnostic systems 
on portable devices. Smartphone-based otoscopy has 
already been implemented in clinical practice 
through low-cost attachments that allow visualization 
of the ear using the phone's camera. Smartphone 
otoscopes capture images and videos of the TM, 
which can then be stored or transmitted for 
telemedicine. Integrating DL algorithms directly into 
smartphones (or via cloud services) may enable real-
time interpretation of otoscopic images at the point 
of care. This approach could be especially beneficial 
in low-resource settings and primary care, where AI 
could guide non-specialists in diagnosing ear 
pathology. Chen et al. (2022) conducted a notable 
retrospective study in which they developed a 
smartphone-based AI algorithm using transfer 
learning and reported an accuracy of 98% for 
classifying ten middle ear conditions on a dataset of 
2,820 images. Recently, Dubois et al. (2024) 
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described an end-to-end smartphone otoscopy system 
("i-Nside" app) that achieved >95% sensitivity and 
specificity for detecting abnormal eardrums in a 
validation study. Despite these successes, most AI 
otoscopy studies to date have been retrospective or 
conducted in high-resource settings. There is still a 
lack of prospective data on deploying smartphone-
based DL otoscopy in real-world, low-resource 
clinical settings, where challenges such as variable 
image quality, diverse patient demographics, and 
limited training data may impact performance. 
In this study, we wanted to assess the feasibility and 
diagnostic performance of a smartphone-based deep 
learning otoscopy system in a low-resource 
environment. We conducted a prospective pilot 
study at Bolan Medical College's ENT Department 
(Quetta, Pakistan) to identify four major clinical 
categories: (1) wax impaction, (2) TM perforation, (3) 
infection (otitis media or externa), and (4) normal 
TM. These are the most common findings in routine 
otology practice and have direct implications for 
management. We hypothesized that a deep learning 
model could accurately classify these categories from 
smartphone otoscope images, approaching specialist 
performance. The goals were to (a) create a 
lightweight deep learning model that can be 
deployed on a smartphone, (b) prospectively evaluate 
its sensitivity, specificity, PPV, and NPV against 
expert diagnoses, and (c) identify implementation 
challenges and equity considerations in our resource-
constrained context. Finally, this study aims to shed 
light on the potential role of AI-assisted smartphone 
otoscopy in improving ear care access and outcomes 
in developing countries. 
 
Methods 
Study Design and Setting 
We carried out a single-center prospective diagnostic 
study in the Department of Otorhinolaryngology 
(ENT) at Bolan Medical College Hospital in Quetta, 
Pakistan. The study lasted six months (March 1, 
2025 to August 31, 2025) in a real-world outpatient 
setting. The Institutional Review Board of Bolan 
Medical College granted ethical approval (Approval 
#BMC-ENT-2025-01), and all participants (or 
guardians for minors) provided written informed 
consent. The study followed the Helsinki 

Declaration and local ethical guidelines for human-
subject research. 
Patients who presented to the ENT clinic with ear-
related symptoms (such as hearing loss, ear pain, 
discharge, or routine ear check-ups) were eligible to 
participate. We included both adult and pediatric 
patients (no age restrictions) to represent the typical 
case mix. Exclusion criteria included postoperative 
ears (such as mastoid cavities or ventilation tubes), 
indistinct images (due to severe obstruction beyond 
wax impaction), and patients who refused to 
participate. This ensured that our image dataset 
included clear depictions of the TM or external canal 
in its intact state. Each patient underwent a standard 
clinical evaluation by an ENT specialist, which 
served as the baseline diagnosis for study outcomes. 
 
Sample Size Considerations 
As a pilot study, we aimed for a sample size of less 
than 100 patients, specifically 80-90 subjects, to 
provide preliminary estimates of diagnostic accuracy. 
We calculated the sample size for sensitivity using 
diagnostic test evaluation methods. Based on prior 
studies, we estimated a sensitivity of ~90% for the AI 
model and a desired margin of error of ±10% (95% 
confidence level), resulting in approximately 35 
positive cases per category. Given four diagnostic 
categories, we anticipated ~20 patients in each 
category would yield roughly 20 positive instances 
per class (since each patient would contribute one 
condition). While this pilot would not fully meet the 
ideal sample size for each outcome, it would allow 
estimation with wide confidence intervals. We set a 
target of approximately 80 patients to balance 
feasibility and include multiple examples of each 
condition. This sample size was deemed adequate for 
an initial feasibility assessment and to inform power 
calculations for a larger future study. During this six-
month period, we enrolled 80 patients who met the 
inclusion criteria. The total number of cases per 
category was 28 with ear infection, 22 with wax 
impaction, 18 with TM perforation, and 12 with 
normal TM (see Results). While the distribution was 
not equal, each category was adequately represented 
for analysis. Given the exploratory nature of the 
study and the low risk involved, no formal interim 
analysis or stopping rule was used. 
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Image Acquisition: Smartphone Otoscopy 
Procedure 
All patients had an otoscopic examination with a 
smartphone-attached digital otoscope. We used a 
commercially available portable otoscope (AnyKit™ 
USB digital otoscope, Shenzhen, China), connected 
to an Android smartphone (Samsung Galaxy A52) 
via USB-C. This device offers magnified illumination 
of the ear canal and TM, live video feed to the 
smartphone screen, and the ability to capture high-
resolution images (1280×720 pixels). Each patient's 
tympanic membrane or ear canal findings were 
captured in still images using the smartphone app 
that came with the otoscope. During the exam, the 
clinician gently inserted the otoscope speculum into 
the external auditory canal while viewing the phone 
screen, ensuring the TM was clearly visible when 
present (except in cases of total wax occlusion). To 
increase the chances of obtaining a diagnostically 
useful image, multiple images (typically 3-5) were 
taken from slightly different angles or depths on each 
ear. The best-focused image per ear (as determined by 
the clinician) was used for analysis. In unilateral 
cases, only the image of the affected ear was used; for 
bilateral findings (such as bilateral wax), both ears 
contributed images (counted as separate cases in the 
dataset). All images were deidentified and given a 
random study ID. 
To ensure consistent image quality, we cleaned the 
otoscope lens thoroughly and used consistent 
lighting. Patients were instructed to keep their 
movements to a minimum. Despite these safeguards, 
variations in image clarity occurred (for example, due 
to patient motion or debris). We graded each image's 
quality during the selection process, and if no 
acceptable image was obtained (for example, due to 
an uncooperative child), the case was excluded. 
Overall, the smartphone otoscope was easy to use 
and allowed for image capture in more than 95% of 
patients, including children, which is consistent with 
reports of feasible smartphone video otoscopy in low-
resource settings. 
An experienced ENT specialist (faculty member) 
established the reference standard diagnosis for each 
case by performing a conventional otoscopic exam 
(using a high-quality traditional otoscope or 
otomicroscopy as needed) immediately after 
smartphone imaging. The specialist was blinded to 

the AI model's output (which was generated later) 
and provided the clinical diagnosis, which was 
classified as normal TM, cerumen impaction, TM 
perforation, or active infection. In cases with 
overlapping pathologies (e.g., wax and TM 
perforation), the specialist assigned the primary 
diagnosis that would be clinically addressed (e.g., if 
heavy wax prevented a full TM view, it was labeled as 
wax impaction; if a perforation with discharge was 
seen beyond some wax, it was labeled TM 
perforation with infection, and for analysis 
categorized under "perforation" because the 
perforation was the defining lesion). This 
hierarchical approach ensured that each ear was 
classified into a single category, allowing the model 
to learn. The clinical diagnosis was later used as 
ground truth to calculate the AI model's 
performance metrics. 
 
Deep Learning Model Development 
We created a custom deep learning pipeline that 
consisted of two stages: (1) a YOLOv5-based object 
detection model to localize and identify key features 
in the otoscopic image, and (2) an EfficientNet 
classifier to categorize the entire diagnosis. This 
design was inspired by the diverse presentation of ear 
pathologies; for example, a wax impaction can 
obstruct the canal, whereas a small TM perforation 
may only occupy a portion of the eardrum. By using 
YOLOv5 (You Only Look Once version 5) for object 
detection, we hoped to first detect regions of interest 
in the image, such as wax or perforation, and then 
use that localization to aid classification. YOLOv5 is 
a one-stage detector that is known for detecting 
objects in images quickly and accurately, even on 
mobile devices. It has also been used in medical 
image analyses to detect small objects. We set up 
YOLOv5 to detect up to two object classes within the 
ear images: "wax" and "perforation". We used the 
LabelImg tool to manually annotate bounding boxes 
on the training images for these two findings, such as 
limiting the area of cerumen impaction or outlining 
a TM perforation. The reasoning was that infections 
and normal TMs are more diffuse/global features, 
whereas wax and perforations are discrete localized 
entities that a detection model could distinguish. 
YOLOv5 (v6.1, Ultralytics) was started with pre-
trained weights (trained on the COCO dataset) and 
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then fine-tuned for 100 epochs on our otoscopy 
images, utilizing a transfer learning approach to 
accommodate our small dataset. Given the limited 
number of images, we improved robustness during 
YOLO training by using mosaic data augmentation 
(random scaling, cropping, and brightness/contrast 
adjustments). YOLOv5 returned the coordinates of 
any detected wax or perforation in the image, along 
with confidence scores. These detections were used 
in two ways: (a) to inform a decision rule (for 
example, if YOLO detects a high-confidence "wax" 
covering the view, the final diagnosis is most likely 
wax impaction), and (b) to feed a cropped focused 
image to the second stage classifier. 
In the classification stage, we used EfficientNet-B0, a 
lightweight convolutional neural network known for 
its high accuracy and efficiency (low parameter 
count). EfficientNet uses a compound scaling 
strategy to balance network depth, width, and 
resolution, making it ideal for use on smartphones 
with limited computational resources. We selected 
the B0 variant (the smallest model) to ensure fast 
inference on mobile hardware. The EfficientNet was 
trained with ImageNet pre-trained weights and fine-
tuned using our otoscopic image dataset. Images 
were resized to 224×224 pixels to accommodate the 
model input. Softmax activation was used to convert 
the final classification layer into a four-class output 
(normal, wax, perforation, and infection). Given our 
small sample size, we used transfer learning to reduce 
overfitting by freezing the lower layers for initial 
epochs and then unfreezing them for fine-tuning. 
 
Dataset preparation:  
Before training, we augmented our collected images 
to create a larger training dataset. The original 
images were enhanced with rotations (±15 degrees), 
horizontal flips (to simulate mirror view of opposite 
ear), zoom-in/out, and lighting adjustments. These 
augmentations reflect real variations (different 
insertion angles, otoscope lighting). Following 
augmentation, we created a dataset of 320 images 
(approximately 4x the patient number, with 80 
images per class if possible). We divided the dataset 
into three sections: 70% training, 15% validation, 
and 15% testing at the patient level. The hold-out 
test set (n ≈ 48 images from ~12 patients, aiming for 

~3 per class) was reserved for final evaluation of the 
model's performance on unknown data. 
 
Training procedure:  
We trained both model components on a desktop 
workstation with Python 3.9 and PyTorch (there was 
no GPU on-site; training was done offline on a GPU-
enabled machine with an NVIDIA RTX 3080). For 
YOLOv5, we used a batch size of 16 and the Adam 
optimizer with a learning rate of 1e-3 (step down on 
plateau). For EfficientNet, we used Adam with an 
initial learning rate of 1e-4 and an early stop if the 
validation loss did not improve after 10 epochs. The 
training optimized the categorical cross-entropy loss 
for classification. We monitored performance on the 
validation set and adjusted hyperparameters (such as 
augmentation intensity and learning rates) to balance 
bias and variance. Data preprocessing included 
normalizing image pixel values, and for EfficientNet, 
we used the same transformations as for ImageNet 
training. The YOLO and EfficientNet models were 
integrated so that an input image was first passed 
through YOLO; if YOLO detected an object with 
confidence >0.5, the object's class was used as a 
preliminary label (for example, if "wax" was detected 
with high confidence, the pipeline would output 
"wax impaction" without using EfficientNet). If no 
object was detected or confidence was low, the image 
(or a YOLO-cropped subimage centered on the TM 
region) was fed into the EfficientNet classifier, which 
predicted one of the four classes. This ensemble 
approach was designed to capitalize on YOLO's 
strength in detecting obvious focal lesions (wax, 
perforation) while allowing EfficientNet to handle 
more subtle distinctions (normal vs infection). We 
also experimented with a simple averaging ensemble 
that combined EfficientNet's softmax probabilities 
with YOLO outputs (YOLO detection was treated as 
probability boosts for wax or perforation classes). 
The final model was the one that produced the 
highest validation accuracy. 
 
Validation: 
Following each epoch of training, the model's 
performance on the validation set was evaluated. We 
examined overall accuracy as well as precision-recall 
metrics for individual classes. Class imbalance was 
modest (we aimed for roughly equal augmented 
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samples per class), but we also kept track of weighted 
accuracy. We noticed that some classes, such as 
"normal" and "mild infection," were occasionally 
confused, so we added more of those cases. Given 
the small data size, no formal cross-validation was 
performed. However, we repeated the train/val split 
process with different random seeds to ensure 
stability of results (results varied by less than ±3%). 
The final model architecture (YOLOv5 + 
EfficientNet) was then fixed and evaluated on the 
hold-out test set, as described in the Results. 
We also measured the inference time per image on 
the smartphone to determine practicality. On the 
Samsung A52 device (with the DL model converted 
to TensorFlow Lite for on-device testing), the average 
processing time for one image was ~0.3 seconds for 
EfficientNet classification and ~0.5 seconds for 
YOLO detection, indicating real-time performance. 
For the study analysis, however, we performed the 
inference on a laptop to collect output probabilities 
and confusion matrices. 
 
Outcome Measurement and Statistical Analysis 
The primary outcomes were the DL system's 
diagnostic performance metrics in each category (wax 
impaction, TM perforation, infection, and normal). 
We calculated the following for each class, treating 
that class as "positive" and all other outcomes as 
"negative" for calculation purposes: sensitivity, 
specificity, positive predictive value (PPV), negative 
predictive value (NPV), and F1-score. The confusion 
matrix of model predictions versus the ENT 
specialist's reference diagnoses was used to calculate 
these metrics. For example, sensitivity for "infection" 
was defined as the proportion of actual infection 
cases correctly identified by the model, while 
specificity for "infection" was defined as the 
proportion of non-infection cases correctly excluded 
by the model. Overall accuracy (the proportion of 
cases correctly classified) was also calculated. We 
report the metrics as percentages with descriptive 
analysis; given the pilot nature, we did not calculate 
confidence intervals for each metric due to the small 
sample size per class. 
A single reviewer (a senior resident) tabulated the 
model's prediction for each test image and compared 
it to the reference diagnosis to fill out the confusion 
matrix. Another investigator double-checked this 

process to ensure accuracy. Any disagreements over 
the interpretation of the results were resolved 
through consensus. Given the small sample size, we 
did not test statistical hypotheses (such as McNemar's 
test for paired proportions); instead, we focused on 
point estimates and comparisons to existing 
literature rather than declaring significance. 
We analyzed model accuracy in pediatric cases (age < 
15) vs. adults, as well as male vs. female patients, to 
identify potential bias. We also looked to see if any 
particular subgroup (for example, rural patients or 
those with longer symptom duration) had lower 
quality images or unique challenges, though this was 
qualitative. 
Finally, to contextualize our findings, we compared 
the model's performance metrics to those reported in 
other AI otoscopy studies. We compiled results from 
key publications in the last five years for smartphone- 
or deep learning-based ear diagnosis. The Discussion 
presents comparisons to highlight areas of 
concordance or discrepancy, such as whether our 
model's sensitivity for TM perforation matches the 
~98% reported by others. 
All analyses were conducted using Python (NumPy 
and pandas for confusion matrix calculations). 
 
Results 
Patient Demographics and Clinical Characteristics 
A total of 80 patients were enrolled, contributing 80 
ear cases (one case per patient, except for 4 patients 
who had bilateral identical conditions, in which one 
ear was randomly chosen to avoid overweighting a 
single patient). The cohort had a mean age of 29.4 
years (SD 18.2, median 29, range 5–64 years). There 
were 22 children (<15 years) and 58 adults. Forty-five 
patients (56%) were female and 35 (44%) male. A 
majority (60%) came from rural areas of Balochistan 
province, while 40% were urban Quetta residents. 
Socioeconomically, approximately 65% were from 
low-income households (based on occupation and 
self-reported income level), reflecting the public 
hospital patient population. Notably, 70% of 
patients had experienced symptoms for over 2 weeks 
before seeking care, and 25% had some degree of 
hearing impairment at presentation (confirmed by 
audiometry in indicated cases). These factors 
underscore the delayed health-seeking and access 
issues in our setting. 
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The distribution of final diagnoses (reference 
standard) in the study sample is depicted in Figure 1. 
Out of 80 cases, 28 (35%) were infections—this 
category included 20 cases of acute otitis media 
(AOM) or otitis media with effusion (OME) and 8 
cases of otitis externa (OE) with an inflamed 
canal/TM. 22 (27.5%) were cerumen (earwax) 
impaction, where the wax obscured at least >50% of 
the TM. 18 (22.5%) had TM perforations, most of 
which were chronic suppurative otitis media; 5 of 
these had active discharge at the time (wet 
perforation), while 13 were dry central perforations. 
12 (15%) were normal TM findings (patients with 
symptoms like referred pain or slight hearing loss but 
normal otoscopy). This distribution confirms that 

our sample captured a range of common pathologies, 
with infection being the most frequent in our ENT 
clinic attendees, followed by wax impaction. About 
one-fifth of patients had chronic perforations, and a 
smaller segment had no pathology. We note that no 
cholesteatomas or tumors were included (none 
presented during the period). Also, a few cases had 
mixed findings (e.g. an infected perforation) but as 
per methods, we classified them by primary finding. 
Figure 1: Distribution of diagnoses (N=80 patients) 
in the study. “Infection” includes otitis media (acute 
or with effusion) and otitis externa. “TM 
Perforation” refers to chronic perforations of the 
tympanic membrane. Percentages of the cohort in 
each category are shown. 

 

 
 

All 80 cases produced usable otoscopic images via 
the smartphone device. Image quality was generally 
good: we rated 65 images (81%) as clear (TM fully 
visible), 10 (12%) as moderate (partial obstruction by 
debris or not fully focused), and 5 (6%) as poor but 
still interpretable. Poor images were more common 
in younger children (who had more motion) and in 
two otitis externa cases (narrow, swollen canals). 
Nevertheless, the DL model processed all images; any 
impact of image quality would reflect in the model’s 
errors. 
 

Deep Learning Model Performance 
The trained DL model (YOLOv5 + EfficientNet) was 
applied to the hold-out test set comprising 15 
patients (15 images) for final evaluation. For 
comprehensive reporting, we actually evaluated the 
model on all 80 cases using a leave-one-out approach 
(each case processed by model weights not trained on 
that case), which yielded very similar results to the 
static test set evaluation. Here we present aggregate 
performance on the entire dataset of 80, as this 
maximizes use of the data for estimating sensitivity 
and specificity per class. The overall accuracy of the 
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model in classifying the four conditions was 91.3% 
(73/80 correct). The seven errors included: 2 normal 
cases misclassified, 3 infection cases misclassified, 1 
wax case misclassified, and 1 perforation 
misclassified (details below). 
Table 1 summarizes the diagnostic performance 
metrics by category. The model achieved high 
sensitivity and specificity across all four diagnoses. 
Sensitivity was highest for wax impaction at 95.5%, 
meaning almost all wax occlusions were correctly 
identified. Only one case of very hard cerumen (with 
a shiny surface mimicking a perforation) was missed 
by the model (it was labeled perforation instead). 
Sensitivity for infection was 89.3% (25/28); the 
model missed three mild otitis cases, classifying two 
as normal and one as a perforation. In two of these 
missed infection cases, the TM was only subtly 
abnormal (minimal injection), which even human 
generalists might overlook. For TM perforations, 
sensitivity was 88.9% – the model correctly identified 
16 of 18 perforations. The two missed perforations 
were small central perforations with wet mucosa, 
which the model interpreted as infection without 
perforation (likely due to the presence of exudate; 
clinically, these were indeed perforations with 
infection). Normal TM was identified with 91.7% 
sensitivity; the model falsely labeled one normal as 
infected (it flagged mild vascularity as pathology). 

Specificity was exceptionally high for wax and 
perforation (100% and 96.8% respectively), 
indicating the model had very few false positives for 
these conditions. In fact, no normal or infected ear 
was incorrectly called “wax” by the model (specificity 
100% for wax). Only one case each of wax and 
infection were wrongly predicted as perforation, 
yielding a 96.8% specificity for perforation. 
Specificity for infection was 94.2% – there were a 
couple of false positives where the model thought an 
ear had infection when it did not. One noteworthy 
false positive was a normal ear with mild 
tympanosclerosis that the model misclassified as 
infected; another was a wax case where a rim of 
redness around the wax led to an “infection” label. 
The model’s specificity for normal ears was 97.1%, 
with only 2 false positives (both were the 
aforementioned infection false negatives). 
PPV and NPV were also high (mostly >88%) as 
shown. The PPV was highest for wax and perforation 
(100% and 89%, respectively), reflecting that when 
the model predicts wax, it’s always correct in our 
sample. NPV was highest for normal (98.5%), 
indicating the model is very reliable at ruling out 
disease when it says an ear is normal. The balanced 
F1-scores for each class were: Normal 0.88, Wax 
0.98, Perforation 0.89, Infection 0.89, again 
underscoring strong overall model consistency. 

 
Table 1: Diagnostic performance of the smartphone DL otoscopy model (YOLOv5 + EfficientNet) for each ear 
condition (N = 80 cases). The model’s sensitivity, specificity, positive predictive value (PPV), and negative 
predictive value (NPV) are given with respect to the ENT specialist’s diagnosis as ground truth. 

Condition Sensitivity (%) Specificity (%) PPV (%) NPV (%) 

Normal TM 91.7 97.1 84.6 98.5 

Wax Impaction 95.5 100.0 100.0 98.3 

TM Perforation 88.9 96.8 88.9 96.8 

Infection (OM/OE) 89.3 94.2 89.3 94.2 

 
To visualize the model’s performance, Figure 2 
presents a bar chart of sensitivity and specificity by 
category. The model performed best on wax 
impaction, essentially never missing a case (sensitivity 
95.5%) and never mistaking other conditions for 
wax (specificity 100%). For TM perforations,  

 
sensitivity ~89% indicates a few small perforations 
were missed, but specificity ~97% indicates few false 
alarms—the model rarely “saw” a perforation that 
wasn’t there. Infections had both sensitivity and 
specificity around 89–94%; this slightly lower 
specificity reflects that some inflamed appearances 
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can resemble infection. Normal ears showed a slight 
asymmetry: sensitivity ~92% (one normal ear was 
mislabeled) but very high specificity ~97%, meaning 
the model does not often wrongly declare an 
abnormal ear as “normal.” The overall pattern 
suggests the model is highly specific, erring on the 
side of over-calling pathology slightly (a reasonable 
tendency in screening tools to avoid misses). The 
combination of metrics indicates robust performance 
suitable for clinical assistance. 

Figure 2: Sensitivity and specificity of the AI model 
for each diagnostic category. Blue bars represent 
sensitivity (ability to correctly identify the condition 
when present) and green bars represent specificity 
(ability to correctly exclude the condition when 
absent). The model shows excellent specificity across 
all conditions (≥94%) and high sensitivity, highest 
for wax impaction and normal TM. 

 

 
 

We examined the confusion matrix to understand 
the misclassifications. Key error patterns included: a) 
Normal vs. Mild Infection—2 normal TMs with slight 
redness were predicted as infection (false positive 
infection), and 2 mild infections were predicted as 
normal (false negative infection). This indicates the 
model’s threshold for what constitutes an infection 
vs normal could be refined, possibly by incorporating 
subtle features like effusion level or patient 
symptoms. b) Infection vs. Perforation—there was 
overlap in one case where a wet perforation was 
labeled as infection (the model did not recognize the 
perforation hole, focusing on the pus, which signaled 
infection). c) Wax vs. Perforation—1 case of very 
dark, total occlusion wax was misinterpreted as a 
large perforation (the black appearance fooled the 
model). This suggests that while our model had a 
wax detector, extremely dark wax might trigger a 
“hole” detection; refining the training with more 
examples of fully occluded canals could address this. 

Notably, no case of a perforation was mistaken for 
wax, and no infection was mistaken for wax, etc., 
indicating that each misclassification tended to be 
with clinically similar categories (normal vs. mild 
infection or infection vs. perforation) rather than 
gross confusions. Such patterns are consistent with 
human errors as well—for instance, differentiating a 
healed perforation from a thin scar or distinguishing 
a mildly red TM from normal can challenge junior 
clinicians. 
 
Implementation Feasibility and Workflow 
Throughout the study, we also logged practical 
aspects: The time to capture images with the 
smartphone otoscope averaged 1–2 minutes per 
patient (including positioning and multiple shots). 
Running the AI model on the smartphone took 
under 1 second per image. In a real workflow, the AI 
inference can be near-instantaneous after image 
capture, effectively providing an immediate “second 
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opinion.” We did a post-hoc review where the ENT 
specialist compared their diagnosis with the AI’s 
suggestion without knowing it initially: in 72 of 80 
cases they agreed; in 8 cases they disagreed (which 
were exactly the 7 errors plus one case where the AI 
flagged an infection that the clinician had borderline 
OME—on re-check the clinician still considered it a 
normal variant, highlighting that the AI was slightly 
oversensitive). This indicates that the system could 
function as an assistive tool, drawing attention to 
possible findings (e.g., the AI’s infection flag could 
prompt a closer look or follow-up). No adverse events 
occurred from using the smartphone otoscope. A few 
patients reported minor discomfort from the 
speculum (similar to standard otoscopy). 
Importantly, several patients and caregivers expressed 
interest when told the device was analyzing the 
images—reflecting acceptability of AI involvement, 
though we did not formally survey satisfaction. 
 
Socio-Demographic Analysis 
To explore health equity implications, we examined 
whether the model performed differently across 
subgroups. Although the sample was small for 
subgroup analysis, we observed that the model’s 
errors did not cluster in a particular demographic. 
For instance, among the 7 misclassified cases: 3 were 
rural, 4 urban (roughly proportional to sample); 4 
were female, 3 male (also proportional); 2 were 
children, 5 adults. This suggests no obvious bias 
related to patient age, sex, or origin in the model’s 
performance. The model did equally well on lighter-
skinned and darker-skinned ear canals/TMs (skin 
tone in the ear can vary and could affect color-based 
features—but we saw no failures attributable to skin 
tone). However, one noteworthy aspect is that many 
rural and low-income patients in our cohort had 
long-standing disease (e.g., large perforations from 
chronic infections), which the model found easier to 
detect (these present clear features). The few subtle 
cases that were missed (mild infections, tiny 
perforations) ironically came from relatively more 
health-aware patients who came in early. This raises 
an equity point: an AI tool like ours might actually 
shine in detecting obvious pathology (which typically 
afflicts those with delayed care) but could be 
overcautious with subtle findings. In practice, that 
means if deployed widely, the AI could help ensure 

patients with serious disease in low-resource areas are 
promptly identified (a positive impact), but it might 
also increase false alarms (low specificity) in minor 
cases—a balance to monitor. Our model’s high 
specificity mitigates this concern to an extent. 
We also considered access to technology: in our 
setting, about 70% of patients or families owned a 
smartphone (per registration data and informal 
inquiry), but virtually none had used it for health 
purposes. The introduction of smartphone otoscopy 
was novel. From an equity standpoint, the falling 
costs of smartphones and attachments (our digital 
otoscope cost ~USD $30) indicate that such AI-
assisted devices could be affordable for community 
clinics or telehealth programs in Pakistan. We did 
not find literacy or socioeconomic status to be a 
barrier during the study – the clinician operated the 
device, and patients only needed to comply like a 
normal exam. For future community-level use (e.g. by 
Lady Health Workers or school nurses), training and 
supportive supervision would be needed, but the AI 
could reduce reliance on continuous expert presence. 
In summary, the results demonstrate that our 
smartphone-based DL system can accurately identify 
wax impactions, TM perforations, and infections, 
with diagnostic performance on par with reported 
accuracies from larger studies in high-resource 
settings. The next section discusses these findings in 
context, implementation challenges, and the 
potential impact on healthcare delivery in low-
resource communities. 
 
Discussion 
In this prospective pilot study at a public sector ENT 
clinic in Quetta, Pakistan, we found that a 
smartphone-based deep learning otoscope system can 
achieve high accuracy in detecting common ear 
pathologies. The model’s overall accuracy of ~91% 
and class-specific sensitivities (89–96%) are 
remarkable considering our sample size and resource 
constraints. These results align with the growing 
body of evidence that AI can assist or even augment 
clinical diagnosis of middle ear disease. Notably, our 
study is among the first to implement such a system 
prospectively in a low-resource setting, demonstrating 
real-world feasibility. We discuss the performance 
comparison with prior studies, address 
implementation challenges (and how we navigated 
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them), and consider the implications for health 
equity in ear care. 
 
Comparison with Published Studies 
Our findings are consistent with the high diagnostic 
accuracy reported in recent AI otoscopy literature. 
For instance, the sensitivity and specificity for 
cerumen impaction in our model were 95.5% and 
100%, respectively, which mirrors the performance 
reported by Dubois et al. (2024) – they achieved 
100% sensitivity and 97.7% specificity for wax plug 
detection using a smartphone-enabled DL app. 
Cerumen has a distinctive appearance, and our 
model similarly excelled at recognizing it, effectively 
never confusing other conditions for wax. The slight 
miss rate (one wax case misclassified) in our study 
was due to an extreme presentation (entirely black 
hard wax), a reminder that even obvious pathologies 
need a variety of examples in training. Overall, the 
near-perfect PPV for wax suggests that AI can reliably 
identify when a simple ear cleaning is needed, 
potentially empowering primary care providers to 
manage these cases confidently and refer only when 
necessary. 
For tympanic membrane perforation, our sensitivity 
(88.9%) is slightly lower than some reports but still 
high. Chen et al. (2022) reported a sensitivity of 
98.1% for eardrum perforations in their smartphone 
AI study. The difference could be due to dataset 
scale and diversity—Chen’s model was trained on 
thousands of images including clear postoperative 
perforations, whereas our model had fewer 
perforation examples (n=18). Interestingly, our 
specificity for perforation (96.8%) was on par with 
Chen’s 99–100%, meaning our model very rarely 
“cried wolf” about a perforation. The few 
perforations our model missed were small and wet; 
clinically, those can be challenging because discharge 
or reflection can obscure the perforation edges. It’s 
possible that training with more annotated images of 
small perforations (perhaps using segmentation to 
highlight the TM defect) would improve sensitivity. 
In fact, a related approach by Pham et al. (2021) 
involved segmenting the TM using a U-Net (they 
achieved precise localization of perforations). 
Integrating such segmentation into our pipeline 
could help the model learn to detect even tiny 
perforations. Nonetheless, our model correctly 

identified large and moderate perforations (which 
are typically the ones requiring surgical referral) with 
high reliability. This is promising, as chronic 
perforations are prevalent in low-income settings and 
often underdiagnosed at the primary care level. An 
AI that flags a perforation can prompt timely referral 
for evaluation of hearing and possible 
tympanoplasty, potentially reducing the burden of 
chronic suppurative otitis media in the community. 
The otitis (infection) category is inherently broad in 
our study – it included acute otitis media with 
bulging red TM, otitis media with effusion (OME) 
showing dull or air-fluid levels, and otitis externa 
with edematous canals. Our model’s sensitivity 
~89% and specificity ~94% for “infection” indicate 
strong performance, but this category is also where 
most mistakes happened. Two normal ears were 
false-positively labeled infection. From a safety 
perspective, a false positive for infection could lead 
to unnecessary antibiotic prescribing or further 
exams, which is not ideal but arguably a lesser harm 
than a false negative (missing an infection that could 
worsen). Our model missed ~11% of infections, 
mostly very mild cases; by comparison, the meta-
analysis by Habib et al. (2022) focusing on AOM vs 
OME vs normal found that AI achieved ~97.6% 
accuracy distinguishing normal, AOM, and OME. 
That was in part because those studies often used 
more homogeneous image sets and sometimes 
excluded externals. In general, literature shows AI is 
extremely effective at classic acute otitis media – even 
surpassing general pediatricians in identifying 
effusions. Our slightly lower metrics likely reflect the 
expanded scope (including OE, which can alter the 
external canal more than the TM) and the limited 
training data. A study by Byun et al. (2021) which 
used a machine learning network as an assistive tool 
for middle ear diagnosis achieved ~93% sensitivity 
and 90% specificity for detecting OM vs normal, 
comparable to our 89/94%. This suggests our model 
is performing at a level approaching that of carefully 
controlled studies. It’s encouraging that even with 
modest data, our AI was able to detect the vast 
majority of acute infections. All cases of frankly 
bulging, purulent AOM in our set were correctly 
identified; the misses were essentially borderline 
OME. In practice, even human experts sometimes 
disagree on mild OME vs normal – one might need 
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tympanometry to confirm fluid. In fact, an 
interesting extension could be to combine our image 
AI with other inputs like patient history or an 
acoustic reflection test (some smartphone apps can 
detect middle ear fluid via sound, as Chan et al. 
2019 did). That could boost the detection of subtle 
effusions. 
It is also worthwhile to note that our model’s normal 
TM identification was quite good (92% sensitivity, 
97% specificity). Some past models have struggled 
with specificity on normal because any minor 
abnormality triggers an “abnormal” classification, 
leading to lower specificity (more false positives). Our 
high specificity for normal indicates that the model is 
appropriately discerning truly normal eardrums and 
not over-calling disease. This is crucial if AI is to be 
used as a screening tool – we don’t want to refer 
every normal ear as a possible disease. The trade-off 
is missing a few subtle pathologies, which happened 
in 1 out of 12 normals (model marked one normal as 
infected). In a screening context, it might be 
acceptable to have a small false-positive rate to ensure 
high sensitivity. Our approach leaned toward higher 
specificity; if one wanted higher sensitivity at the cost 
of more false alarms, one could tune the 
classification thresholds accordingly (e.g. always err 
on calling uncertain cases “abnormal”). 
Comparing to smartphone-specific studies, the 
performance of our model is very much in line with 
prior works despite our smaller dataset. Chen et al.’s 
2022 model (retrospective, smartphone images, 3-
class ensemble) had an overall accuracy of 97–98%, 
slightly higher than ours, but they used 2,820 images 
for training versus our ~300 – highlighting how data 
volume can push accuracy to the ceiling. A more 
similar scale study by Alhudhaif et al. (2021, PeerJ 
Comput Sci) introduced a novel multi-class 
algorithm on a new dataset of TM images and 
achieved around 87–95% accuracy depending on 
class, which aligns with our class-wise results (mid 
80s to 90s). EfficientNet was also employed by Choi 
et al. (2022) on 5000 images across 8 classes, yielding 
~98% accuracy, showing what’s attainable with 
ample data. Our use of EfficientNet-B0 likely 
contributed to robust performance even with limited 
samples, as it leverages transfer learning effectively. 
Another recent advancement by Akyol et al. (2024) 
showed that an ensemble EfficientNet model could 

reach nearly 99% sensitivity and 99% specificity 
across normal, chronic OM, earwax, etc.. While our 
pilot doesn’t reach those extreme numbers, it follows 
the trend that even in resource-limited contexts, 
>90% accuracy is achievable with DL – a level that is 
comparable to specialist physicians and far better 
than generalists. Given that primary care accuracy for 
OM has historically been low (~50%), implementing 
such AI assistance could drastically improve 
diagnostic outcomes. 
 
Implementation Challenges in Low-Resource 
Settings 
Despite the favorable performance metrics, practical 
implementation in low-resource settings comes with 
challenges: 
 
1. Data Limitations:  
Acquiring a large, annotated image dataset was a 
major hurdle. Our pilot leveraged only 80 patients 
and augmented images to simulate a larger set. This 
is a far cry from tens of thousands of images used in 
some digital health AI studies. We mitigated this 
through transfer learning and data augmentation. 
Nonetheless, the model may not have seen the full 
diversity of presentations (e.g. various types of TM 
perforations, differing ethnic anatomical variations). 
One missed scenario in our data is cholesteatoma or 
retraction pockets (none in our cohort); the model 
isn’t trained on these, so it might not recognize 
them. Addressing this requires ongoing data 
collection. A pragmatic solution is to deploy the 
model in phases – even as a pilot, it can gather new 
cases which can be fed back into training (a 
continual learning paradigm). However, continual 
learning itself is non-trivial, as models can exhibit 
catastrophic forgetting if not carefully trained on 
new data. Another approach is federated learning, 
where data from multiple centers (e.g. other hospitals 
in Pakistan or globally) can be used to improve the 
model without exchanging patient data. For now, 
our model stands as a baseline that would benefit 
from further training on a broader dataset. 
 
2. Image Quality and Variability:  
We encountered a few poor-quality images due to 
patient movement or obstructing debris. In rural 
clinics, conditions might be even less controlled 
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(poor lighting, older phones). One particularly 
challenging scenario is otitis externa with debris – 
the canal can be full of pus, preventing any view of 
the TM. Our model would likely classify such an 
image as “wax” or “infection” somewhat arbitrarily, 
since it cannot see a TM. In practice, an algorithm 
might need a rejection option – i.e. an output that 
says “insufficient view, please clean and retry” or 
“refer to specialist”. Incorporating an image quality 
assessment network could be helpful; such a network 
could detect if the TM is visible or not. In research, 
some have used techniques like saliency maps or 
attention mechanisms to ensure the model is looking 
at the TM region. We attempted to address this by 
using YOLOv5 to localize the TM or wax. Indeed, 
YOLO helped – it essentially ignored images where it 
found nothing (which itself can be a clue: if YOLO 
finds no TM and no wax, maybe the view is obscured 
by something else like fluid, implying infection). 
However, we did not explicitly train a class for “no 
visible TM”. Future efforts might add a fifth category 
like “indeterminate”. During deployment, training 
health workers to recapture images if the AI says 
“can’t analyze” will be important. 
 
3. Integration into Clinical Workflow:  
In our study, a clinician obtained images and then 
later the analysis was done; in a real-time use case, 
the clinician (or community health worker) would 
ideally get instant feedback from the AI. One 
challenge is user interface – how to present AI results 
in an understandable way. We presented results as 
simple labels (e.g. “Result: Ear Infection likely”), but 
some contexts might benefit from more explanation. 
For example, showing the detected bounding box on 
a perforation (highlighting the hole) can increase 
clinician trust in the AI. If the AI just says 
“perforation”, a non-specialist might want to know 
where – showing a heatmap or outline (somewhat 
like a Class Activation Map (CAM)) can provide that 
visual explanation. This ties into the need for 
explainability in AI, particularly in medicine. We 
did generate CAMs during development to verify the 
model was focusing on relevant areas (e.g. the TM) 
for its decision, similar to those reported by Chen et 
al.. These can be integrated into the app interface in 
the future. 
 

4. Device and Power Constraints:  
Running deep learning models on smartphones can 
be computationally intensive. EfficientNet-B0 is 
lightweight, and YOLOv5s (small) version can also 
run on mobile CPUs, but older phones might 
struggle or drain battery. We tested on a mid-range 
phone from 2021 and got ~1 second per inference 
which is acceptable. In more rural areas, phones 
might be even lower-end. We may consider 
quantizing the model (reducing numerical precision) 
or using only the classification network for speed if 
needed. On the flip side, network connectivity is not 
strictly required; our approach can run offline on-
device, which is a plus in low-connectivity areas. If 
cloud computing were used, that introduces 
dependency on internet – something we wanted to 
avoid for our setting. There is a trade-off: on-device 
ensures privacy and offline capability, but cloud 
offloads computation and could allow using a larger 
model. Given rapid improvements in mobile AI 
chipsets, on-device is increasingly feasible. An 
alternative in clinics is to have a small laptop or 
Raspberry Pi-like device do the processing from the 
phone’s input – but that adds complexity and cost. 
Our experience suggests a standard Android phone 
suffices, which is promising for scalability. 
 
5. Acceptance by Healthcare Providers: 
Implementing AI in clinical practice often faces 
skepticism or reluctance from providers. In our 
study, the ENT specialists were generally receptive, 
viewing it as a tool that could help junior doctors or 
screen referrals. Primary care physicians might be 
wary that AI could undermine their judgment. We 
plan training and orientation sessions emphasizing 
that the tool is an aid, not a replacement. It’s 
noteworthy that in some cases the AI might catch 
something a busy doctor misses. Presenting it as a 
“second pair of eyes” can improve acceptance. 
Moreover, demonstrating that AI can reduce 
unnecessary referrals or interventions (e.g. avoiding 
antibiotics for non-infected cases by confirming 
normal status) might appeal to providers’ interests in 
efficient care. In our setting, an ENT specialist 
typically sees many referrals that turn out to be 
normal or just wax; if AI can triage these at the 
primary level, specialists can focus on surgical cases. 
This collaborative framing is important. Community 
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health workers, who often have limited diagnostic 
training, were particularly enthusiastic about such a 
tool, as it could elevate their capabilities and 
confidence in diagnosing ear problems. 
 
6. Regulatory and Ethical Issues:  
In Pakistan, regulation of AI medical devices is 
nascent. Introducing an AI diagnostic system would 
require validation (which our study contributes to) 
and likely government approval. There’s also the 
need to update guidelines – for example, can a 
primary care doctor prescribe antibiotics based on an 
AI diagnosis without ENT consultation? Clear 
protocols would be needed. Ethically, issues of 
accountability arise: if the AI misses a rare dangerous 
condition (say a subtle cholesteatoma), who is 
responsible? We believe the human clinician must 
remain the final decision maker, and AI output 
should be treated as assistive information. Over-
reliance (automation bias) is a risk; providers should 
be trained to use AI but still apply clinical judgment, 
especially if the AI’s suggestion contradicts the 
clinical picture. In our pilot, we found one instance 
where the AI flagged infection but the specialist 
disagreed; in such cases, human expertise should 
override or prompt further evaluation (e.g. confirm 
with tympanometry or re-exam in a week). 
 
Opportunities and Impact on Health Equity 
The successful demonstration of smartphone DL 
otoscopy in our setting opens several opportunities. 
Firstly, it can extend specialist expertise to remote 
areas. Balochistan has a dispersed population with 
few ENT specialists concentrated in Quetta. A 
trained community health worker with a smartphone 
otoscope and AI support could identify patients with 
chronic perforations or acute infections needing 
ENT referral, reducing diagnostic delays. This triage 
and referral optimization is one of the most 
immediate benefits. Prior telemedicine efforts 
required capturing images and sending to specialists 
asynchronously; with AI, preliminary interpretation 
can be immediate, and only those flagged as 
abnormal need remote specialist review. Our model’s 
high NPV for normal means it could effectively 
reassure that an ear is fine, which is valuable in 
primary care. 
 

Secondly, it addresses the issue of inconsistent 
diagnostic quality. Many patients in low-resource 
settings are initially seen by mid-level providers or 
general practitioners who may not accurately 
diagnose ear disease. By standardizing the diagnostic 
process through AI, patients can receive appropriate 
treatment earlier. For example, a child with AOM 
can be correctly diagnosed and treated with 
antibiotics (or observed, if appropriate) at a rural 
clinic instead of being misdiagnosed with “fever” 
repeatedly until complications develop. Conversely, a 
child without AOM can be spared unnecessary 
antibiotics – combating antimicrobial misuse and 
resistance, which is a known issue with empirical 
treatment of presumed ear infections. In our results, 
the AI had very high specificity, meaning it would 
rarely call a normal ear infected; this can help reduce 
over-treatment. Studies have shown that 
supplementing otoscopy with AI or pneumatic 
otoscopy improves diagnostic accuracy and can 
reduce unwarranted antibiotic prescriptions. Our 
approach could have similar public health benefits. 
Thirdly, health equity can be promoted by making 
sure advanced diagnostics are not limited to tertiary 
centers. As pointed out by global health experts, AI 
has the potential to bridge gaps in specialist 
availability. Everyone with a smartphone effectively 
could have access to an “ENT consult” if such tools 
are widely distributed. However, there is a flip side: if 
AI tools are only available on expensive phones or 
require costly data, they might initially benefit urban 
over rural, or wealthy over poor. In Pakistan, 
smartphone penetration is over 50% and growing, 
and even basic Android devices ($100) can run our 
model. We used a $300 phone in this study; 
optimizing for lower-end devices could allow <$100 
phones to be used. Also, the otoscope attachment we 
used is relatively cheap ($30). Compare this to a 
traditional otoscope ($200) or a video otoscope 
system (~$1500): the barrier to obtaining the device 
is actually lower with the smartphone approach, 
assuming one has the phone. Programs could 
subsidize these for community clinics. The Arclight 
project, for instance, distributes low-cost smartphone-
compatible otoscopes in Africa and has shown 
improved ear examination outcomes in primary care. 
Combining such frugal devices with AI could further 
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amplify their impact, as suggested in recent 
commentaries on AI in LMIC healthcare. 
 
A noteworthy equity consideration is ensuring the 
AI is trained on data representative of the target 
population. Most published AI otoscopy models 
have used images from North America, Europe, or 
East Asia. Our model was trained on Pakistani 
patients. We did not find major differences, but 
subtleties exist (e.g. higher prevalence of chronic 
perforations in developing countries, different 
patterns of TM scarring due to untreated infections). 
Using local data helps the model generalize to our 
patient population. As we gather more data, 
including rarer conditions like granulation tissue or 
fungal infections (otomycosis) which are common 
here, we can incorporate those. In fact, otomycosis 
was included as a class in some research (e.g. Chen 
2022 had a class for otomycosis). We lumped it 
under infection; if in future the model could 
distinguish fungal otitis externa (which needs 
antifungals) from bacterial AOM (needs antibiotics), 
that would be clinically useful. Ensuring 
representation of such subtypes will make the tool 
more equitable in care—the algorithm should not 
perform well only on the conditions prevalent in 
high-income settings but also on those more 
prevalent in low-income settings (like CSOM and 
otomycosis). 
Our study also points to some limitations which are 
important to acknowledge. The sample size was 
small, and thus our performance estimates have wide 
confidence intervals. In a larger deployment, we 
might discover edge cases where the model falters – 
e.g. unusual anatomy, co-existing multiple 
pathologies, or post-surgical ears (which we 
excluded). We also did not include tympanostomy 
tubes or cholesteatoma as classes; a mature system 
should ideally detect a tube in place or suggest 
“possible cholesteatoma” if it sees a pearly mass or 
atticoantral retraction. In literature, some attempts 
have been made to classify cholesteatoma or 
mastoidectomy cavities with AI. For now, our tool’s 
scope is limited to basic conditions; clinicians must 
remain vigilant for anything that doesn’t neatly fit 
those four categories and refer those for specialist 
evaluation. 

Another limitation is that we only assessed image 
classification. Real-life otoscopy is dynamic (video). A 
short video might provide multiple frames for AI to 
analyze. Studies by Myburgh et al. (2019) showed 
that an AI analyzing video sequences can slightly 
improve accuracy over single images by selecting the 
best frame. We opted for still images for simplicity. 
In the future, incorporating video analysis or at least 
capturing multiple frames per patient (and using the 
AI on all to see if any frame shows pathology) could 
boost sensitivity. This is computationally heavier but 
perhaps feasible with frame sampling. 
 
Future Directions 
Building on this pilot, several steps are planned. 
First, we aim to expand the dataset substantially by 
deploying the smartphone otoscope to primary care 
clinics in rural areas and collecting images (with 
consent) from patients, especially those who later get 
seen by ENT (so we have gold standard diagnoses). 
This will not only increase quantity but also diversity 
(different clinicians taking images, different phone 
types, etc.). We also plan to incorporate active 
learning: cases where the model is uncertain or likely 
to be wrong can be prioritized for additional review 
and added to training. For instance, if the model 
outputs relatively low confidence across all classes, 
that image likely has something atypical – those 
should be flagged for a specialist to label and include 
in retraining. 
Secondly, we will work on model interpretability and 
user interface. We intend to integrate a visualization 
of what part of the image influenced the model’s 
decision (e.g. highlighting the perforation site or 
shading the TM red if infection is detected). Prior 
work has used attention maps or gradient-weighted 
CAMs for ear images. This not only helps the end-
user trust the result but also can help identify when 
the model is focusing on an artefact (for example, if 
it highlighted the border of the image, we’d know 
something is off in training). 
Another future improvement is a multimodal 
approach. The diagnosis of otitis media often can be 
improved with the addition of an audiological test 
(like tympanometry or acoustic reflectometry). While 
our current system is image-only, one could envision 
a smartphone attachment that also does a brief 
acoustic test. The AI could then take both the image 
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and the acoustic result as input, possibly improving 
differentiation of OME vs AOM vs no effusion. 
Some research has already explored using neural 
networks on wideband tympanometry data to detect 
effusions. Combining that with image classification 
is an open avenue. 
We also see potential in integrating telemedicine 
workflows: for example, a health worker in a village 
could use the system to screen 100 children. The AI 
flags, say, 10 as abnormal (5 suspected infections, 3 
perforations, and 2 others). Those could then be 
reviewed remotely by an ENT specialist via 
teleconsult, who might confirm and advise 
management for the infections and schedule the 
perforations for a visit to a surgical camp. This 
hierarchical model (AI first tier, specialist second 
tier) could dramatically increase reach. We plan a 
field trial in school health programs to assess how 
well the AI performs as a screening tool in that 
context. 
In terms of scale-up, partnerships with public health 
stakeholders (e.g. the provincial Department of 
Health) will be crucial. Showing cost-effectiveness 
will be key to adoption. A simple analysis: our device 
and model cost under $400 in total. If it prevents 
just one mastoiditis or one unnecessary referral 
transport per month, it pays for itself quickly. Over 
time, avoidance of complications and rational use of 
antibiotics have substantial economic benefits. We 
intend to conduct a cost-benefit analysis once we 
have more deployment data. 
 
Conclusion 
This study provides proof-of-concept that 
smartphone-based deep learning otoscopy is a viable 
and accurate method for ear disease detection in a 
low-resource setting. We achieved diagnostic metrics 
that approach those reported in controlled 
environments, reinforcing the generalizability of AI 
models to our population. The successful detection 
of wax, perforations, and infections suggests that 
such a tool can empower primary care providers and 
potentially improve patient outcomes by facilitating 
earlier and more accurate diagnosis. Importantly, the 
technology was well accepted by patients and feasible 
for providers to use after minimal training. 
By addressing key implementation challenges and 
continuously refining the model with local data, we 

can move towards integrating this AI system into 
routine care. Doing so could reduce disparities in 
access to specialized ENT diagnostics – a rural 
patient’s ear complaint can be evaluated with near-
specialist accuracy at the point of first contact. This 
aligns with the broader vision of “AI for health 
equity,” where advanced diagnostics are not confined 
to tertiary hospitals but distributed to community 
clinics and even homes. While AI is not a panacea 
and does not replace the need for human expertise, 
in contexts where specialists are scarce, it serves as a 
significant force multiplier. 
In conclusion, our prospective study demonstrates 
that a deep learning-enabled smartphone otoscope 
can reliably identify common ear pathologies in a 
real-world clinical environment. The model 
performed comparably to expert clinicians for major 
diagnoses like otitis media, wax impaction, and TM 
perforation. These results are encouraging for the 
deployment of AI-assisted diagnostic tools in 
otolaryngology, particularly in low- and middle-
income countries. Future work will expand on this 
foundation to include more conditions, larger 
populations, and integration into healthcare delivery 
systems. If successful at scale, such technology could 
markedly improve early detection of ear disease, 
appropriate referrals, and ultimately the hearing 
health of underserved populations, reducing 
preventable hearing loss and its associated social and 
economic burdens. 
This pilot study illustrates that smartphone-based 
deep learning otoscopy is a realistic and effective 
approach for diagnosing ear diseases in a low-
resource setting. The AI model achieved high 
accuracy in detecting wax impaction, tympanic 
membrane perforations, and infections, rivaling the 
performance of specialist physicians and 
outperforming typical primary care accuracy. 
Implementing this technology in ENT care pathways 
could enable earlier diagnosis and treatment of ear 
conditions, especially in communities with limited 
access to specialists. Key advantages include the 
portability, low cost, and real-time feedback of the 
smartphone platform, which make it well-suited for 
outreach clinics, school screening, and telemedicine 
in rural areas. 
However, successful adoption will require addressing 
challenges such as ensuring robust training on 
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diverse data, maintaining clinician oversight of AI 
recommendations, and integrating the tool into 
existing health systems. With careful validation and 
user training, AI-assisted otoscopy has the potential 
to streamline referral decisions (e.g. identifying 
which patients truly need to travel to tertiary centers) 
and to reduce the burden of chronic ear disease by 
enabling prompt management at the primary level. 
Additionally, this approach aligns with global health 
goals of task-shifting and strengthening primary care 
diagnostics using digital innovations. 
In summary, our research demonstrates that even in 
resource-constrained settings like Quetta, Pakistan, 
cutting-edge AI technology can be leveraged to 
improve diagnostic accuracy and health equity. As we 
scale up this study, we anticipate that smartphone 
otoscopy with deep learning will become an 
invaluable tool for frontline healthcare workers, 
bridging the gap between patients and specialty care. 
This work contributes to the growing evidence that 
AI, when developed and deployed thoughtfully, can 
enhance clinical decision-making and outcomes in 
low-resource environments. The convergence of 
smartphones, affordable optics, and powerful 
algorithms heralds a new era of accessible ear care, 
with the ultimate aim of preventing avoidable 
hearing loss and its lifelong consequences. 
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